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The dynamic responses of the railway and the carriage due to action of the multi-roller
carriage were determined by means of the "nite element method. Based on the dynamic
equilibrium of a carriage and its suspension systems, the property matrices for the carriage
were derived. The assembly of the last property matrices and those for the railway together
with the elastic foundation yields the &&time-dependent'' overall property matrices and the
equations of motions for the entire vibrating system, where the external loads on the railway
are composed of the gravity forces due to axle rollers and carriage. By using the direct
integration method, the equations of motions were solved to give the dynamic responses of
the railway and the carriage. Since the e!ects of inertial forces due to the moving loads
(carriage together with the axle rollers) and the e!ects of springs and dampers for the
suspension systems are all considered and the total number of the axle rollers ranges from
2 to 4, the formulation of this paper may be the closest one in agreement with the practical
situations among the existing literature. Therefore, the presented theory should be
signi"cant for the design of railway tracks.
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1. INTRODUCTION

A &&massless'' elastic foundation in which compressive and tensile reactions are admissible is
called the Winkler foundation [1]. Based on this hypothesis the dynamic response of the
railway tracks has been studied by many researchers. Here only some of the relevant
literature was mentioned. Criner and McCann [2] presented an electric-analog-computer
technique for the analysis of beams on elastic foundations and subjected to travelling forces.
Kenney and Pasadena [3] studied a similar problem with an analytical solution and
resonance diagrams, where the e!ect of viscous damping was also considered. Florence [4]
obtained the wave solution by using the Laplace-transform method for a semi-in"nite
beam. In addition to a harmonic concentrated exciting force, Patil [5] and Du!y [6]
studied the e!ect of mass of the load on the dynamic response of an in"nite beam on the
Winkler foundation, but Patil's solution is available only for the stationary load. To realize
the in#uence of the foundation mass, Patil [7] determined the natural frequencies of an
in"nite beam resting on a three-dimensional &&inertial'' elastic foundation.

Some researchers thought that the Winkler foundation was not realistic and presented
a new foundation called &&tensionless Winkler foundation''. Since such a foundation cannot
transmit tensile forces across the interface between the supporting and supported members,
separation of track from the foundation will occur under certain conditions. Based on the
tensionless Winkler foundation, Weitsman [8, 9] presented several examples to prove that
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the absence of tensile forces may be accompanied by the formation of &&no contact regions''.
For an in"nite beam resting on a #at rigid foundation and subjected to an &&upward''
concentrated moving force, Adams and Bogy [10] computed and illustrated graphically the
non-contact lengths, mode shapes and foundation reactions. To replace the &&upward''
concentrated moving force by the &&downward'' one, the same problem was studied by
Choros and Adams [11].

All the foregoing problems were solved with the analytical methods except that of
reference [2]. However, for most of the engineering problems, the analytical methods are
usually not available and must rely on the numerical methods. Although the "nite element
method (FEM) has already been used for the dynamic analysis of structures such as bridge
[12], beam [13], plate [14], etc., application of the FEM to the dynamic analysis of the
&&in"nite'' railway tracks is rare because the &&in"nite'' degrees of freedom (d.o.f ) of
the &&in"nite'' railway track prevents the availability of the FEM. For this reason, based on
the equivalence between the resonant frequency, the critical moving speed, the frequency
spectrum and the maximum forced vibration responses of the "nite railway and those of the
in"nite one, the present authors replaced the in"nite railway by a "nite one so that the FEM
is available for the dynamic analysis of the "nite railway [15]. Hence, the dynamic
behaviors of the "nite railway studied in this paper are very close to those of the in"nite one.

The research on the inertial e!ects of the moving loads is rare. In addition to references
[5] and [6], Michaltsos et al. [16] studied the inertial e!ect of a moving mass on the
dynamic response of a simply supported beam, Esmailzadeh et al. [17] studied a similar
problem by replacing the point mass with the uniform partially distributed moving masses.
In both references [16, 17], the problem was solved by using the series solution method
incorporated with the conventional analytical technique. For a simply supported beam on
an elastic foundation and subjected to a moving load, Thambiratnam and Zhuge [18]
studied the inertial e!ect of the moving load with FEM. In reference [19], Krylov
investigated the vibration characteristics of the track and the ground for the in"nite railway
analytically by considering the e!ect of the sleepers and neglecting that of the inertial force
of the single axle load.

In most of the existing literature [1}11, 16, 17, 19], the total number of moving loads is
single and the dynamic response of the load itself was neglected. To accommodate the
practical applications, the dynamic responses of the railway together with the carriage
subjected to the action of a railway carriage with 2}4 suspension systems are studied in this
paper. E!ects such as the inertial forces due to carriage and axle loads, and the elastic forces
and the damping forces due to the springs and dampers of the suspension systems, were all
taken into account in the formulation of the problem.

2. PROPERTY MATRICES FOR THE RAILWAY AND ITS FOUNDATION

Figure 1 shows the mathematical model for a "nite railway track resting on the Winkler
foundation with linear spring constant k

w
, where oxyz is the global co-ordinate system, ¸ is

the total length of the railway, l is the length of each beam element and the solid circles (f)
denote the nodes for the beam elements. The nth element was enlarged and shown in Fig. 2,
where x6 (n)

1
and x6 (n)

2
denote the distances from the left end of the railway (point o6 ) to node

r and node s of the nth beam element respectively. For convenience, a local co-ordinate
system rxyz was introduced. The distance from the left end of the beam element (node r)
to any cross-section of the beam element is represented by x, and the distance from node
r to the ith linear spring is denoted by x

i
respectively.



Figure 1. The mathematical model for a "nite railway.

Figure 2. De"nitions for the element displacements, w
z

and h
y
, the node displacements u

j
( j"1}4) and the

relevant notations.
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2.1. ELEMENT STIFFNESS MATRIX

For the present problem, the potential energy of the beam element together with the
supporting linear springs is given by

;"

1

2P
l

0

EI
y
h2
y,x

dx#
1

2

ne
+
i/1

k
w
w2
z
(m

i
, t) , (1)

where E is Young's modulus of the railway material, I
y

is the moment of inertia of the
cross-sectional area of the railway (about the y-axis), w

z
is the vertical de#ection of the beam

element (in the z direction), h
y

is the slope of the beam element (about the y-axis),
h
y,x

"Lh
y
/Lx, k

w
is the spring constant of each linear spring, m

i
"x

i
/l and n

e
is the total

number of linear springs supporting the beam element.
From reference [20], one has
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In the last expressions, u
i
(t) (i"1}4) are the nodal displacements shown in Figure 2 and

a
zi

and a
yi

are the associated shape functions [20].
The substitution of equations (2a) and (2b) into equation (1) results in

;"1
2
MuNT[k]MuN, (4)

where
[k]"[k]

1
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2
, (5)
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In the last equations, [k]
1

is the sti!ness matrix of the beam element alone, [k]
2

is the
sti!ness matrix due to the n

e
linear springs supporting the beam element, and the

combination of [k]
1

and [k]
2

de"nes the e!ective sti!ness matrix of a beam element for the
railway supported by the linear springs as shown in Figure 1. The notations M N and [ ]
appearing in the last equations denote the column vector and the rectangular matrix
respectively.

2.2. ELEMENT MASS MATRIX

If the consistent mass model is employed, the element mass matrix of the beam element
shown in Figure 2 is given by [20]

[m]"P o[a]T[a] d<!"

oAM l
420 C

156 !22l 54 13l

!22l 4l2 !13l !3l2

54 !13l 156 22l

13l !3l2 22l 4l2 D , (8a)

where o is the mass density of the railway, AM is the cross-sectional area of the railway and

[a]"C
Ma

z
(m)N

Ma
y
(m)ND . (8b)

3. PROPERTY MATRICES FOR A RAILWAY CARRIAGE

For a multi-roller carriage resting on the railway, the mathematical model is shown in
Figure 3, where G is the center of gravity (c.g.) of the carriage, m

el and J
el denote the

e!ective mass and mass moment of inertia of the lth carriage, Fl and Ml are the external
force and moment, ul and hl are the vertical displacement and rotation angle of the lth
carriage at the c.g. of carriage, G respectively. The carriage is supported by n6 suspension
systems and n6 rollers. The damping coe$cient and spring constant of the ith suspension
system are denoted by c

i
and k

i
respectively, while the mass of the ith roller is denoted by

m
i
and the horizontal distance between the ith roller (or ith suspension system) and G is

denoted by r as shown in Figure 3.

i



Figure 3. The mathematical model for a moving multi-roller carriage on the railway.
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3.1. PROPERTY MATRICES

If the un-sprung masses of roller are assumed to be always in contact with the railway,
then the force on the axle of the ith roller is

F
i
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i
(u8

i
!ul#r

i
hl)#c

i
(u85

i
!uR l#r

i
hQ l) , (9)

where r
i
is positive if the ith spring/damper system is located on the left side of G and is

negative on the right side of G as shown in Figure 3.
Dynamic equilibrium for the ith roller (m

i
) requires that
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i
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while the requirement for the dynamic equilibrium of the rigid carriage (m
el and J

el) is
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Substituting equation (9) into equations (10a), (10b) and (10c), one obtains
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Writing equations (11a)}(11c) in the matrix form gives
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From equations (12) and (13) one obtains the element sti!ness, damping and mass
matrices for a multi-roller carriage (see Figure 3) to be
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For the case of n6 "4, r
1
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, r
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, r

3
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and r
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4
, as shown in Figure 3, one

has
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where vy is a diagonal matrix and
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(17)

3.2. EXTERNAL LOADS ON THE RAILWAY

If the reactive forces on the axles of the rollers m
i
(i"1}n6 ) are represented by F@

i
, while

the static de#ection and rotational angle of the carriage are represented by d
st

and h
st

respectively, as shown in Figure 4, then static equilibrium of the carriage requires
that
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the substitution of equation (20) into equation (19) gives
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Figure 4. The static de#ection and rotational angle of the carriage, d
st

and h
st
, and the reactive forces on the

axles of the rollers, F @
i
(i"1}n6 ).
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From equations (18), (20) and (21) one obtains
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and the total load on the railway at r"r
i
is
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For the special case of k
i
"k (i"1}n6 ), equation (23) reduces to
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4. EQUATIONS OF MOTIONS FOR THE RELEVANT SYSTEMS

4.1. EQUATION OF MOTION FOR THE RAILWAY

Since the element property matrices for the railway together with the foundation have
been determined by equations (5)}(8), the assembly of these element property matrices will
give the following equation of motion for the whole railway
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In equations (25)}(27), the notations NM and N denote the total number of nodes and that of
d.o.f. for the whole railway. Since there are two d.o.f. for each node, it is evident that
N"2NM .

For convenience of formulation, the dimension of equation (25) is extended from N to
N@"N#2, i.e.,
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where
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Since all the external loads move with the carriage, they are considered as the coe$cients of
the external force vector for the carriage, MFM

c
N
N{]1

[see equation (37)], rather than those for
the railway, for convenience. This is the reason why all the coe$cients of MFM N

N{]1
as shown

in equation (30c) are equal to zero.

4.2. EQUATION OF MOTION FOR THE CARRIAGE

If the carriage moves on the railway with speed < from left of the railway to right, then
the position of the c.g. of the carriage, G, at any time t is given by

x6
G
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0
#r

1
#<t, (31)

where x6
0

is the initial position of the "rst roller at t"0 and r
1

is the distance between the
"rst roller and G (see Figure 5).

Since the rollers are assumed to contact with the railway always, the vertical
displacement of the ith roller, u8

i
, will be equal to that of the node q of the railway,
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"w
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, if the ith roller applies at node q at time t, i.e.,
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It is noted that the subscript (2q!1) indicates the (2q!1)th d.o.f. for u8
i
. Since the length of

each railway element is l, the d.o.f. of the ith roller is given by
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i
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Figure 5. De"nitions for the distance x6
G
(t) and the relevant notations.
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where r
i
is the distance between the ith roller and G, while n6 is the total number of rollers for

one carriage. For the case of x6
0
"0 at t"0, from equations (31) and (33) one obtains

N
1
"1 as it should be.
For convenience, we set

N
n6 `1

"N#1, N
n6 `2

"N#2"N@ (34a, b)

and extend the dimension of the equation of motion for the carriage (cf. equations (14)}(16))
from n6 #2 to N@, i.e.,
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All the coe$cients for the property matrices of equation (35) are equal to zero except the
following ones:
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equations (33) and (34), while X
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appearing in equation (36) refer to the coe$cients of the
property matrices as shown in equation (14) or equation (16).

Likewise, all the coe$cients of the external force vector MFM
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where FM
z6 i

(i"1}n6 ) are the external loads on the railway through the rollers of the carriage
(see equations (23) and (24)).

In general, the nodal forces MFM (i)
c

N induced by a concentrated force FM
z6 i

on a beam element
are given by [21]
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in which Ma
z
(m)N is the shape function given by equation (3a) and MFM (i)

c
N is to take the form
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where the subscripts 1 and 2 for f (i) and m(i) refer to the nodal force and the nodal moment at
nodes r and s of the beam element on which FM

z6 i
is located, respectively (see Figure 2).

It is evident that one has
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0 0 0N (40a)

if FM
z6 i

is located at node r. Similarly, if FM
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is located at node s, one has

MFM (i)N"M0 0 FM
z6 i

0N. (40b)

For simplicity, the locations for the rollers (r
1
, r

2
,2, r

n6
), the length of each beam element

(l), the moving speed of the carriage (<) and the time interval (Dt) are so selected that all the
rollers of the carriage are located at the nodes of the associated beam elements in each
computing step. Hence, the external force vector MFM

c
N
N{]1

is composed of the element
external force vectors to take the form given by equation (40a) or (40b).

4.3. EQUATION OF MOTION FOR THE ENTIRE SYSTEM

The equation of motion for the railway and elastic foundation is determined by equations
(28)}(30) and that for the carriage is de"ned by equations (35)}(37), the combination of these
two expressions will lead to the equation of motion for the entire vibrating system

[MI (t)]
N{]N{

Mu6K (t)N
N{]1

#[CI (t)]
N{]N{

Mu65 (t)N
N{]1

#[KI (t)]
N{]N{

Mu6 (t)N
N{]1

"MFI (t)N
N{]1

, (41)

where

[MI (t)]
N{]N{

"[MM ]
N{]N{

#[m6
c
(t)]

N{]N{
, (42a)

[CI (t)]
N{]N{

"[c6
c
(t)]

N{]N{
, (42b)

[KI (t)]
N{]N{

"[KM ]
N{]N{

#[kM
c
(t)]

N{]N{
, (42c)

[FI (t)]
N{]1

"[FM ]
N{]1

#[FM
c
(t)]

N{]1
. (42d)

From equation (33) one sees that N
i
(i"1}n6 ) is a function of time t, hence all the

property matrices and the external force vector of equation (35) are also functions of time as
one may see from equations (36) and (37), and so are those of equation (41) for the entire
system. For this reason, the present problem is rather complicated and consumes much
more computer time than the general problem (with all property matrices being constant)
studied in the existing literature [1}16].

5. NUMERICAL RESULTS AND DISCUSSIONS

The mathematical model for this study is shown in Figure 3 and the attention is focused
on central vertical displacements of the railway, w

z
(mM , t)"w

z
(0)5, t), and the vertical

displacements at the c.g. (G) of the carriage, w
G
(t), where mM "x6 /¸.
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The given data for the railway are: Young's modulus E"20)6]1010 N/m2, moment of
inertia for the cross-sectional area I

y
"2)037]10~5 m4, mass density o"7850 kg/m3,

cross-sectional area AM "6)37]10~3 m2, mass per unit length m6 "oAM "50 kg/m, radius of

gyration c
g
"JI

y
/AM "0)032 m, spring constant for the Winkler foundation

k
w
"3)73]107 N/m2, and length of each beam element l"1)0 m. While the given data

associated with the carriage are: total mass of the carriage m
ev
"2)0]104 kg, mass moment

of inertia J
ev
"1)0]104 kg m2, mass of each axle roller (or wheel) m

i
"100)0 kg

(i"1, 2,2, n6 ), spring constant for each suspension system k
i
"3)0]104 N/m, and

damping coe$cient for each damper c
i
"2)0]104 Ns/m. For convenience, the external

loads on the c.g. of carriage (G) are assumed to be zero, i.e., Fl(t)"Ml(t)"0.

5.1. COMPARISON WITH SOME ANALYTICAL SOLUTIONS

For a "nite uniform beam (with length ¸) resting on the elastic foundation and simply
supported, the natural frequencies u

j
and the vertical (transverse) displacements w

z
(mM , t) at

position mM "x6 /¸ due to a stationary pulsating concentrated force P (t)"PM sinu
e
t applying

at mM
1
"x6

1
/¸ are respectively given by [22]

u
j
"a6 A

n
¸B

2
Jj4#b4, j"1, 2,2, (43)

w
z
(mM , t)"

2PM ¸3

m6
=
+
j/1

sin( jnmM ) sin( jnmM
1
)C

sinu
e
t

n4a6 2 ( j4#b4)!u2
e
¸4

!

u
e
sin u

j
t

¸4u
j
(u2

j
!u2

e
)D (44)

where

a6 2"
EI

y
m6

, b4"A
¸

nB
4 k

w
EI

y

. (45a, b)

For the railway and elastic foundation studied in this paper with length ¸"100 m, the
lowest 12 natural frequencies u

j
( j"1}12) obtained from equation (43) are shown in

column 2 of Table 1, while those obtained from the FEM introduced in this paper are listed
in column 3 for the lumped-mass model and in column 4 for the consistent-mass model,
respectively. From Table 1 one "nds that, among the two FEM models, the natural
frequencies obtained from the lumped-mass model are more close to those obtained from
equation (43). This is because the assumptions made by the lumped-mass model are more
close to those made by equation (43). However, the di!erences between the values of
u

j
( j"1}12) obtained from the lumped-mass model and the corresponding ones obtained

from the consistent-mass model are negligible.
If the last railway is subjected to a stationary pulsating force P (t)"98000 sin 3t

N applied at the central point of the railway (i.e. mM
1
"x6

1
/¸"0)5), the time histories for

vertical central displacement w
z
(0)5, t) of the railway are shown in Figure 6, where the solid,

the dashed and the dotted lines denote the time histories obtained from equation (44) (with
j"1}1000), the FEM based on the lumped-mass model and the FEM based on the
consistent-mass model (with element length l"1)0 m, time interval Dt"0)01 s)
respectively. It is evident that the dynamic responses of the railway obtained from the FEM
(either based on the lumped-mass model or the consistent-mass model) are very close to
those obtained from the analytical solution given by equation (44).



TABLE 1

¹he lowest 12 natural frequencies of a simply supported beam on elastic foundations

Natural frequencies u
j

(rad/s)

Mode By equation (43) By FEM
numbers

( j) ¸umped-mass model Consistent-mass model

1 863)712962 863)712962 863)702760
2 863)713672 863)713672 863)704148
3 863)716748 863)716748 863)707943
4 863)725030 863)725030 863)708043
5 863)742492 863)742492 863)711542
6 863)774245 863)774245 863)724925
7 863)826534 863)826534 863)760091
8 863)906735 863)906734 863)820987
9 864)023357 864)023354 863)916315

10 864)186033 864)186026 864)055930
11 864)405519 864)405505 864)250835
12 864)693684 864)693655 864)513174

sTotal beam length ¸"100 m.

Figure 6. The time histories of a simply supported beam (¸"100 m) on elastic foundation subjected to
a pulsating force P(t)"PM sin u

e
t at mid-span (PM "98 000 N, u

e
"3 ) 0 rad/s):**, by equation (44); } } } } }, by

FEM (lumped-mass model); d, by FEM (consistent-mass model).
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5.2. NATURAL FREQUENCIES AND MODE SHAPES FOR THE RAILWAY

For the free-free railway with length ¸"500 m (and total number of "nite elements
N

e
"¸/l"500) studied in all the follwoing subsections, the natural frequencies and mode

shapes for the 1st, 4th and 10th modes are shown in Figure 7. From the "gure, one sees that
u

1
+u

4
+u

10
+863)712 rad/s, this is because the natural frequencies for a railway will

approach a continuous frequency spectrum when the ratio ¸/cg of the railway exceeds
a certain value (e.g., ¸/cg"500/0)032'15000 for the present example) as shown in
reference [15]. Besides, Figure 7 shows that all the higher mode shapes of the railway look



Figure 7. The mode shapes for the free}free railway with length ¸"500 m: (a) the 1st mode with
u

1
"863)712913 r/s; (b) the 4th mode with u

4
"863)712915 r/s; (c) the 10th mode with u

10
"863)713030 r/s.
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like the travelling waves with wave length

j
k
"

¸

(k/2)
"

2¸

k
, k"1, 2,2, (46)

where k refers to the kth mode shape. It is evident that if the resonance occurs at the kth
mode, then the associated exciting period will be

¹
ek
"

j
k
<
"

2¸

k<
(47)

or the exciting frequency is given by

u
ek
"

2n
¹

ek

"k
n<
¸

. (48)

Equation (48) denotes the exciting frequency &&on the carriage'' due to the wavy surface of
the railway. Because of interaction between the railway and the carriage, the exciting
frequency &&on the railway'' is also u

ek
. Equations (47) and (48) are obtained based on the

assumption that the roller of the single-roller carriage always keeps &&smooth'' contact with
the railway, hence, they are also valid for a carriage with two axle rollers. However, for the
carriage with more than &&two'' rollers, equations (47) and (48) will be valid only for the cases
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of uniformly distributed rollers with average sti!ness of the suspension system near the
rollers being so small that constant contact of all the rollers with the railway is not
prevented. In other words, resonance of the carriage with two rollers occurs at the exciting
frequency u

ek
de"ned by equation (48), but this is not always true for the carriage with more

than two rollers, as one may see in the following subsections.

5.3. INFLUENCE OF TOTAL NUMBER OF AXLE ROLLERS (n6 )

For the cases of total number of axle rollers n6 "2, 3 and 4, the relationship between the
moving speeds of the carriage (<) and the absolute values of the maximum vertical central
displacements of the railway, Dw

z
(0)5, t) D

max
, is shown in Figure 8(a), while the relationship

between carriage speeds < and the absolute values of the maximum vertical displacements
at the center of gravity (G) of carriage, Dw

G
(t) D

max
, is shown in Figure 8(b). The time interval

for the "nite element analysis is Dt"l/< s and the CPU time required for each curve of
Figures 8}15 is about 50 h, where the unit of < is m/s and the computer machine is Digital
DEC800. Some signi"cant phenomena and the associated physical meanings are stated
below:

(i) The values of Dw
z
(0)5, t) D

max
decrease with the increase of n6 for <(125 m/s (see

Figure 8(a)).
For the present example, the total mass of the carriage is m

ev
"2)0]104 kg and

the mass of each roller is m
i
"100 kg (i"1, 2,2, n6 ). The ratio between m

ev
and m

i
is

R
m
"m

ev
/m

i
"200)0. Since the mass of the carriage is much larger than that of each

roller, the in#uence of the roller weight on the magnitude of each concentrated load
on the railway FM

z6 i
(i"1}n6 ) de"ned by equation (24) is negligible, that is,

FM
z6 i
Jm

ev
g/n6 . From the last expression, one sees that the magnitude of each

concentrated load on the railway, FM
z6 i
, decreases with the increase of the total number

of rollers, n6 , so do the maximum vertical central displacements of the railway,
Dw

z
(0)5, t) D

max
.

(ii) Near <"50 m/s, resonance occurs for the carriage with two rollers, but does not
occur for the carriage with 3 or 4 rollers (see Figure 8(b)).

For the 10th mode shape of the present railway (see Figure 7(c)), from equations
(46) and (47) one has j

10
/2"¸/k"500/10"50 m and ¹

e10
/2"¸/(kV)"

500/(10V)"50/V s. Hence, for a carriage with two rollers and travelling on the
railway with speed <"50 m/s, it will be like a two-wheel motorcycle running on
a road with sinusoidal (wavy) surface and its framework (or body) will oscillate
regularly in the vertical direction with half period ¹

e10
/2"50/V"50/50"1)0 s.

This should be the reason why the solid curve for the &&two-roller'' carriage as shown
in Figure 8(b) has a hump (or has the resonant phenomenon) near travelling speed
<"50 m/s. However, for the carriage with 3 or 4 rollers, the non-uniform
distribution or the particular arrangement of the rollers prevents the &&smooth''
contact (or &&exact'' "t) of &&all the rollers'' with the wavy pro"le of the 10th mode
shape. Thus, the &&regular'' oscillation of the carriage in the vertical direction for the
carriage with rollers more than &&two'' is signi"cantly reduced, so that the resonance
near <"50 m/s does not occur.

It is noted that, for a &&rigid'' carriage with &&two'' rollers, &&all the rollers'' will
contact with the railway freely, but this is not &&always'' true for a &&rigid'' carriage with
more than two rollers. Besides, for the example studied in this paper, the magnitudes
and locations of all the suspension systems are &&symmetrical'' with respect to the



Figure 8. E!ect of total number of rollers for a carriage, n6 , on (a) the maximum vertical central displacement of
the railway, Dw

z
(0)5, t) D

max
and (b) the maximum vertical displacement at the c.g. (G) of the carriage, Dw

G
(t) D

max
:**,

2-roller carriage (r
1
"!r

2
"6 m); } ) } ) } ), 3-roller carriage (r

1
"!r

2
"5 m, r

3
"0 m); } } } } }, 4-roller carriage

(r
1
"!r

4
"5 m, r

2
"!r

3
"4 m).
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center of gravity of the carriage, G; therefore, the heave and pitch motions of the
carriage are uncoupled and the natural frequency of the heave motion and that of
the pitch motion in such a case are equal to each other [23]. In general, the
&&symmetrical'' arrangement for the carriage is the situation in practice, but
the presented theory is not limited to the &&symmetrical'' cases. Actually, for the
passengers in a &&long'' carriage, they usually do not feel the existence of the pitch
motion of the carriage because the amplitudes of the de#ected wavy railway surface
induced by the moving carriage are much smaller than the carriage length.

(iii) The resonant speed for railway, <K
zi
, and that for carriage, <K

Gi
, increase with the

increase of total roller number n6 (See Figures 8(a) and (b)).
In Figure 8(a), the maximum of each curve is denoted by A

i
(i"2, 3, 4) and in

Figure 8(b) by B
i
(i"2, 3, 4), where i refers to the total number of rollers for each

carriage, n6 . For convenience, the value of Dw
z
(0)5, t) D

max
for A

i
is called &&peak

maximum railway displacement'' and denoted by w(
zi
, while the associated carriage
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speed is called the &&peak maximum-displacement speed for railway'' (or resonant
speed for railway) and denoted by <K

zi
. Similarly, w(

Gi
and <K

Gi
are called &&peak

maximum carriage displacement'' and &&peak maximum-displacement speed for
carriage'' (or resonant speed for carriage), respectively. It is noted that the foregoing
&&peak maximum displacements'' denote those at the speci"ed points and do not
mean that they are the &&overall'' (or global) maximum displacements in the whole
railway or in the whole carriage.

From Figure 8(b) one sees that the resonant speed for carriage <K
Gi

increases with
the increase of roller number n6 . In other words, the larger the total number of rollers
for a carriage, n6 , the higher the resonant speed for carriage, <K

Gi
. This is because the

undamped heave and pitch natural frequency of the carriage is given by

u
c
"J+n6

i/1
k
i
/m

ev
, so that the heave and pitch natural frequency of the carriage

increases with the increase of roller number n6 ; besides, the exciting frequency u
ek

is
proportional to the carriage speed < as shown in equation (48). Since the responses
of the railway are induced by the carriage, the relationship between the resonant
speed for railway,<K

zi
, and the total roller number n6 (see Figure 8(a)) is similar to that

between the resonant speed for carriage, <K
Gi

, and n6 (see Figure 8(b)).
(iv) The resonant speeds for the railway, <K

zi
, are not equal to the corresponding ones for

the carriage, <K
Gi

(see Figures 8(a) and 8(b)).
From Figures 8(a) and 8(b), one sees that the peak maximum railway

displacements w(
zi

are much smaller than the corresponding peak maximum carriage
displacements w(

Gi
. This is a reasonable result, since the sti!ness of the suspension

system for the carriage is much smaller than the sti!ness of the elastic foundation for
the railway. In addition, because of the e!ect of the suspension system, the peak
maximum railway displacements w(

zi
and the corresponding peak maximum carriage

displacements w(
Gi

do not appear at the same instant of time as one may see from the
histories of w

z
(0)5, t) and w

G
(t). This is the main reason why the resonant speeds

for the railway, <K
zi
, are not equal to the corresponding ones for the carriage, <K

Gi
, as

shown in Figures 8(a) and 8(b). From the last two "gures one "nds that
<K
Gi
!<K

zi
+25 m/s for the total number of rollers i"2, 3 and 4.

5.4. INFLUENCE OF ROLLER SPACING

Let r
i
(i"1!n6 ) denote the distance between the ith roller and the c.g. of the carriage, G,

as shown in Figure 3, the in#uence of the roller spacing d
ij
"r

i
!r

j
on the maximum

vertical central displacements of the railway, Dw
z
(0)5, t) D

max
, with the total number of rollers,

n6 "2 and n6 "4, are shown in Figures 9(a) and 9(b), respectively. It is noted that the value of
r
i
for the ith roller located on the left side of the c.g. of the carriage, G, is positive, while the

value of r
i

on the right side of G is negative as shown by the statement following
equation (9). The maxima for the three curves of Figure 9(a) are denoted by A@

2
, AA

2
and AA@

2
,

respectively, where the subscript 2 refers to the carriage with &&two'' rollers and the
superscripts (primes) @, A and @@@ denote the carriage with roller spacings d

ij
"r

i
!r

j
"12, 10

and 8 m, respectively. From Figure 9(a) one sees that the resonant speed for railway, <K
zi
,

increases with reducing the roller spacing d
ij
. From reference [15] one "nds that there exists

a critical speed <
cr
+707 m/s for the present railway subjected to a &&single'' moving force,

which is much higher than the carriage speed shown in Figure 9. It is believed that this
result may be used to explain the above trend of <K

zi
, since the &&two'' rollers will

be equivalent to a &&single'' roller when the spacing d
ij

decreases and approaches zero
(i.e., d

ij
P0).



Figure 9. In#uence of roller spacing d
ij
"r

i
!r

j
on the maximum vertical central displacement of the railway,

Dw
z
(0)5, t) D

max
, with the total number of rollers: (a) n6 "2; 2-roller carriage: **, r

1
"!r

2
"6 m; } ) } ) } ),

r
1
"!r

2
"5 m; } } } } } , r

1
"!r

2
"4 m, (b) n6 "4; 4-roller carriage: **, r

1
"!r

4
"6 m, r

2
"!r

3
"5 m;

} ) } )} ) , r
1
"!r

4
"5 m, r

2
"!r

3
"4 m; } } } } } , r

1
"!r

4
"4 m, r

2
"!r

3
"3 m.
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The same theory may be used to explain the phenomenon appearing in Figure 9(b) with
n6 "4, where the maxima of the three curves are denoted by A@

4
, AA

4
and A@@@

4
. Of course, the

subscript 4 denotes n6 "4, but the superscripts (primes) @, A and @@@ denote three sets of roller
spacings: (i) d

12
"1 m, d

23
"10 m, d

34
"1 m; (ii) d

12
"1 m, d

23
"8 m, d

34
"1 m and (iii)

d
12
"1 m, d

23
"6 m, d

34
"1 m respectively. It is evident that the major di!erence between

the three sets of roller spacings is the values of d
23

"r
2
!r

3
"10, 8, 6 m, respectively.

Because the latter are smaller than the corresponding ones for the two-roller carriage as
shown in Figure 9(a), d

12
"r

1
!r

2
"12, 10, 8 m, the associated resonant speed for the

railway,<K
zi
, as shown in Figure 9(b) are greater than the corresponding ones in Figure 9(a).

For example, the value of <K
zi

is 300 m/s for A@
4

(with d
23
"10 m) as shown in Figure 9(b),

but the value of <K
zi

is 215 m/s for A@
2

(with d
12
"12 m) in Figure 9(a). The former is greater
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than the latter, because the roller spacing for the former (d
23
"10 m) is smaller than the

spacing for the latter (d
12
"12 m).

The in#uence of roller spacing d
ij

on the maximum vertical displacement at c.g. of the
carriage, Dw

G
(t)D

max
, is shown in Figure 10. Where the maxima for the curves with n6 "2 are

denoted by B@
2
, BA

2
and B@@@

2
(see Figure 10(a)) and those with n6 "4 by B@

4
, BA

4
and B@@@

4
(see

Figure 10(b)). It is evident that the resonant speed for the carriage, <K
Gi

, increases with
decreasing the roller spacing. This trend of the curves for <K

Gi
versus roller spacing d

ij
(Figure 10) is the same as that for <K

zi
versus d

ij
(Figure 9) due to the e!ect of interaction

between the carriage and the railway.
From Figure 10(a) one also sees that the 2-roller carriage has the phenomenon of

resonance in the vicinity of <"50 m/s and the resonance becomes more predominant
when the roller spacing d

12
decreases from 12 to 8 m. The reason for the resonance of
Figure 10. In#uence of roller spacing d
ij
"r

i
!r

j
on the maximum vertical displacement at c.g. (G) of the

carriage, Dw
G
(t) D

max
, with the total number of rollers: (a) n6 "2; 2-roller carriage: **, r

1
"!r

2
"6 m; } ) } ) } ) ,

r
1
"!r

2
"5 m; } } } } } , r

1
"!r

2
"4 m, (b) n6 "4; 4-roller carriage: **, r

1
"!r

4
"6 m, r

2
"!r

3
"5 m;

} ) } )} ) , r
1
"!r

4
"5 m, r

1
"!r

4
"4 m; }} } } } , r

1
"!r

4
"4 m, r

2
"!r

3
"3 m.
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a 2-roller carriage at <+50 m/s has been stated in the last subsection (see Figure 8(b)), and
the reason for smaller spacing inducing more predominant resonance is described below. In
the derivation of equations (47) and (48), it has been shown that the two expressions de"ning
the values of exciting period ¹

ek
and exciting frequency u

ek
are obtained from the carriage

with &&single'' roller. Hence, for a two-roller carriage, if the spacing d
12

approaches zero, the
dynamic behavior of the two-roller carriage will approach that of the single-roller carriage.
From this point of view, the in#uence of roller spacing d

ij
on the values of Dw

G
(t)D

max
in the

vicinity of <"50 m/s as shown in Figure 10(a) is reasonable.

5.5. EFFECT OF STIFFNESS OF THE SUSPENSION SYSTEM

The sti!ness of the suspension system is determined by the spring constant k as shown in
Figures 3 and 4. For the cases of k"30 000, 60 000 and 90 000 N/m, Figure 11 shows the
Figure 11. E!ect of sti!ness of the suspension system, k, on the maximum vertical central displacements of
railway, Dw

z
(0 ) 5, t) D

max
, due to the action of (a) 2-roller carriage with roller locations r

1
"!r

2
"5 m and (b)

4-roller carriage with r
1
"!r

4
"5 m and r

2
"!r

3
"4 m: **, k"30 000 N/m; } )} ) } ) , k"60 000 N/m;

}} } }} , k"90 000 N/m.



Figure 12. E!ect of sti!ness of the suspension system, k, on the maximum vertical displacements at c.g. of the
carriage, Dw

G
(t) D

max
, due to the action of (a) 2-roller carriage with roller locations r

1
"!r

2
"5 m and (b) 4-roller

carriage with r
1
"!r

4
"5 m and r

2
"!r

3
"4 m: ** , k"30 000 N/m; } )} ) } ) , k"60 000 N/m; } } } } } ,

k"90 000 N/m.
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curves for Dw
z
(0)5, t)D

max
versus < and Figure 12 shows those for Dw

G
(t)D

max
versus <. Among

the curves, those in Figures 11(a) and 12(a) are due to action of the 2-roller carriage with
spacing d

12
"r

1
!r

2
"10 m, while those in Figures 11(b) and 12(b) are due to the 4-roller

carriage with spacings d
12
"1 m, d

23
"8 m and d

34
"1 m. Since the three curves in Figure

11(a) or 11(b) are approximately coincident with each other, the in#uence of sti!ness of the
suspension system on Dw

z
(0)5, t)D

max
is negligible. This is a reasonable result, because, for the

present example with k
i
"constant (i"1}n6 ), the external loads on the railway FM

z6 i
(t) are

independent of the spring constants k
i
(i"1}n6 ) as may be seen from equation (24) and the

values of k
i
("3)0]104 N/m) are much smaller than those of the elastic foundation for the

railway, k
w

("3)73]107 N/m).
Although the in#uence of sti!ness of the suspension system on Dw

z
(0)5, t)D

max
is negligible

(see Figures 11(a) and 11(b)), this is not true for Dw
G
(t)D

max
(see Figures 12(a) and 12(b)),
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however. From Figures 12(a) and 12(b) one sees that the peak maximum carriage
displacements, w(

Gi
(i"1}n6 ), decrease with the increase of spring constants k

i
(i"1}n6 );

besides, the values of w(
Gi

(i"1}n6 ) due to the 2-roller carriage (see Figure 12(a)) are greater
than the corresponding ones due to the 4-roller carriage (see Figure 12(b)).

5.6. INFLUENCE OF CARRIAGE MASS

For the case of carriage mass much greater than the roller mass (i.e., m
elAm

i
, i"1}n6 ),

such as the present example, equation (24) shows that the external exciting forces on the
railway, FM

z6 i
(i"1}n6 ), are approximately proportional to the magnitude of the carriage mass

m
el . This is the main reason why the values of the maximum vertical central displacements

of the railway, Dw
z
(0)5, t)D

max
, as shown in Figure 13 are also proportional to the magnitude of
Figure 13. In#uence of carriage mass m
el on the maximum vertical central displacements of the railway,

Dw
z
(0)5, t) D

max
, due to (a) 2-roller carriage with roller locations r

1
"!r

2
"6 m and (b) 4-roller carriage with

r
1
"!r

4
"6 m and r

2
"!r

3
"5 m:** , m

el"20 000 kg; } ) } ) } ) , m
el"30 000 kg; } } } } } , m

el"40 000 kg.



Figure 14. In#uence of carriage mass m
el on the maximum vertical displacements at c.g. of the carriage,

Dw
G
(t) D

max
, due to (a) 2-roller carriage with roller locations r

1
"!r

2
"6 m and (b) 4-roller carriage with

r
1
"!r

4
"6 m and r

2
"!r

3
"5 m:** , m

el"20 000 kg; } ) } ) } ) , m
el"30 000 kg; } } } } } , m

el"40 000 kg.
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m
el , approximately, either the railway is subjected to the 2-roller carriage with

r
1
"!r

2
"6 m (Figure 13(a)) or the 4-roller carriage with r

1
"!r

4
"6m and

r
2
"!r

3
"5m (Figure 13(b)).

A similar phenomenon appears in Figure 14(a) in the vicinity of<"50 m/s and in Figure
14(b) in the vicinity of <"150 m/s for the maximum vertical displacements at the c.g. of
carriage, Dw

G
(t)D

max
. But this similarity disappears in the vicinity of <"240 m/s in Figure

14(a) and <"330 m/s in Figure 14(b), because the values of Dw
G
(t)D

max
are not proportional

to the carriage mass m
el again, near the above-mentioned speed ranges. This should be the

result of interaction between the railway and the carriage. Besides, the values of Dw
G
(t)D

max
decrease with the increase of carriage mass m

el in the vicinity of<"130 m/s in Figure 14(a)
and <"230 m/s in Figure 14(b), near which the minimum of each curve is located. This
phenomenon means that the stability of the carriage will increase with the increase of
carriage mass m

el in the speed range far from resonance.
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5.7. INFLUENCE OF DISTRIBUTIONS OF ROLLERS

In this subsection, the dynamic behaviors of the railway and the carriage due to the
action of a 4-roller carriage with two kinds of roller distributions are studied. As shown in
Figure 15, the solid curves are obtained based on the &&non-uniform'' distribution of the four
rollers along the carriage length with locations r

1
"!r

4
"6 m, r

2
"!r

3
"5m (or

d
12
"1 m, d

23
"10m, d

34
"1m), while the dashed curves are based on the &&uniform''

distribution with locations r
1
"!r

4
"6 m, r

2
"!r

3
"2 m (or d

12
"d

23
"d

34
"4 m).

For convenience, the non-uniformly distributed rollers are called &&non-uniform rollers'' and
the carriage with non-uniform rollers is called the &&non-uniform carriage''. Similarly,
&&uniform rollers'' refers to the uniformly distributed rollers and &&uniform carriage'' refers to
the carriage with uniform rollers.
Figure 15. In#uence of uniform and non-uniform distributions of rollers along the carriage length on (a) the
maximum vertical central displacements of the railway, Dw

z
(0 ) 5, t) D

max
, and (b) the maximum vertical displacements

at c.g. of the carriage, Dw
G
(t) D

max
. 4-roller carriage: **, r

1
"!r

4
"6m, r

2
"!r

3
"5m; } } } } } ,

r
1
"!r

4
"6m, r

2
"!r

3
"2 m.
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For the non-uniform carriage, roller 1 is very close to roller 2 (d
12
"1 m(2 m) and so

also for roller 3 and roller 4 (d
34
"1 m(2 m), hence the e!ect of interaction between

rollers 1 and 2 is predominant and so also for rollers 3 and 4. However, for the uniform
carriage, the spacing between any two adjacent rollers is so large (d

12
"d

23
"d

34
"4 m

'2 m) that the interactive e!ect between any two adjacent rollers is negligible [15]. This is
the reason why the maximum vertical central displacements of the railway, Dw

z
(0)5, t)D

max
,

due to the action of the &&non-uniform carriage'' are larger than those due to the &&uniform
carriage'' in the speed range far from resonance, <"0}235 m/s, as shown in Figure 15(a).
But this is not true for the speed range near resonance,<"235}335 m/s. This is because the
excitations on the railway coming from the non-uniform carriage (or rollers) are irregular
and those from the uniform carriage (or rollers) are regular.

From Figure 15(b) one sees that the in#uence of roller distribution on the maximum
vertical displacements at c.g. of the carriage, Dw

G
(t)D

max
, is opposite to that on the maximum

vertical central displacement of the railway, Dw
z
(0)5, t)D

max
, just mentioned above (see Figure

15(a)). Whether for non-uniform carriage or uniform carriage, the distributions of the four
rollers are &&symmetric'' with respect to the c.g. (G) of the carriage, hence the undamped
heave and pitch natural frequencies of the carriages are the same [23] and given by

u
c
"J+4

i/1
k
i
/m

el . Now that resonance occurs on the &&uniform carriage'' and does not
occur on the &&non-uniform carriage'' in the vicinity of<+50 m/s, this phenomenon reveals
the fact that the exciting frequency (u

e
) on the carriage coming from the railway through the

uniform rollers due to the interactive e!ect between railway and carriage is di!erent from
that through the non-uniform rollers. In other words, the heave and pitch natural frequency
of the uniform carriage is the same as that of the non-uniform carriage, but the exciting
frequencies associated with the uniform rollers are di!erent from those associated with the
non-uniform rollers. This is the reason why resonance occurs on the uniform carriage and
does not occur on the non-uniform carriage in the vicinity of <+50m/s. On the contrary,
in the vicinity of <+330 m/s, resonance occurs on the non-uniform carriage and does not
occur on the uniform carriage as shown in Figure 15(b). The reason why resonance will
occur on the 4-roller uniform carriage in the vicinity of <+50m/s is stated as follows.

For the uniform carriage, its four rollers are uniformly distributed along the carriage
length. Besides, the spacing between any two adjacent rollers is so large, d

12
"d

23
"

d
34
"4 m, that the constant contact of &&all the four rollers'' with the 10th (wavy) mode

shape (with half wavelength j
10

/2"50m) is not prevented and the vertical motion of the
4-roller &&uniform carriage'' is similar to that of the &&2-roller'' carriage travelling along the
railway. This should be the reason why the dynamic behavior of the &&4-roller'' uniform
carriage is similar to that of the &&2-roller'' carriage in the vicinity of <+50m/s. On the
contrary , for the non-uniform carriage, the spacing between rollers 1 and 2 and that
between rollers 3 and 4 are so small (d

12
"d

34
"1m), that the average sti!ness of the

suspension system per unit carriage length near rollers 1 and 2, or rollers 3 and 4, is
kM "(k

1
#k

2
)/d

12
"(k

3
#k

4
)/d

34
"6)0]104 N/m, which is two times that for the uniform

carriage (kM "k
i
"3)0]104 N/m). Non-uniform roller distribution plus non-uniform

(stronger) sti!ness for the non-uniform carriage will prevent the &&smooth'' contact (or
&&exact'' "t) of &&all the four rollers'' with the wavy pro"le of the 10th mode shape of the
railway and signi"cantly change the dynamic characteristics of the non-uniform carriage.

6. CONCLUSIONS

1. For the example studied in this paper, the magnitudes and locations of all the suspension
systems are &&symmetrical'' with respect to the center of gravity of the carriage, G,
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therefore, the heave and pitch motions of the carriage are uncoupled and the natural
frequency of the heave motion and that of the pitch motion are equal to each other. In
general, the &&symmetrical'' arrangement for the carriage is the situation in practice, but
the presented theory is not limited to the &&symmetrical'' cases.

2. Since each higher mode shape of a long railway looks like a travelling wave and all the
rollers of a 2-roller carriage keep constant contact with the &&wavy'' higher mode shape
freely, serious vertical vibration (or resonance) of the 2-roller carriage will occur if the
carriage travels on the railway with speed < such that j/<"2)0 s (or (j/2)/<"1)0 s),
where j/2 is the half wavelength (or distance between any two adjacent nodes) for the
mode shape of the railway. However, the last statement is usually not valid for the
carriage with more than &&two'' rollers, which is dependent upon the distribution of the
rollers along the carriage length and the magnitude of spacings between any two
adjacent rollers.

3. The peak maximum-displacement speed for the railway (or resonant speed for the
railway), <)

zi
and that for the carriage, <)

Gi
, are di!erent. It is found that <K

Gi
!<)

zi
+

25m/s (i"1}n6 ) for certain cases studied in this paper, where n6 denotes the total number
of rollers for the carriage.

4. Since the value of <)
zi

(or <K
Gi

) due to the action of a single-roller carriage is much higher
than that due to a multi-roller carriage, reducing the roller spacing of the multi-roller
carriage will raise the resonant speed <)

zi
(or <K

Gi
) of the multi-roller carriage. This is due

to the fact that a multi-roller carriage will look like a single-roller carriage if the spacings
between any two adjacent rollers are reduced to zero.

5. The in#uence of the sti!ness of the suspension systems, k
i
(i"1}n6 ), on the maximum

vertical central displacements of railway, Dw
z
(0)5, t) D

max
, is negligible, but that on the

maximum vertical displacements at the c.g. of the carriage, Dw
G
(t) D

max
, is signi"cant near

the resonant speeds.
6. Increasing the carriage mass (m

ev
) will induce higher values of Dw

z
(0)5, t) D

max
, but may

reduce the values of Dw
G
(t) D

max
near the resonant speeds. Hence, increasing the carriage

mass (m
ev

) is bene"cial for achieving better stability of the carriage.
7. For a multi-roller carriage, the distribution of the rollers along the carriage length is an

important factor a!ecting the interaction between the railway and the carriage.
8. All the statements presented in this paper are based on the numerical example studied in

this paper. It is possible that part of them may not be suitable for all the other examples
and this needs a further study.
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